Power, Exponential & Logarithmic Functions
← Back to Mathematics
Logarithm Definition
$\log_{\color{#059669}a} {\color{#2563eb}y}$
$y$
$y > 0$
$a$ (base)
$a > 0, a \neq 1$
Laws of Logarithms
$\log_a x^n = n\log_a x$
$\log_a xy = \log_a x + \log_a y$
$\log_a \dfrac{x}{y} = \log_a x - \log_a y$
$\log_a b = \dfrac{\log_c b}{\log_c a}$
$\log_a b = \dfrac{1}{\log_b a}$
Logarithms to Exponential
$\lg y = \log_{10} y$
$\ln y = \log_e y$
$x = \log_a y \Leftrightarrow y = a^x$
$\lg y = x \Leftrightarrow y = 10^x$
$\ln y = x \Leftrightarrow y = e^x$
Previous
Binomial Expansions
Next
Trigonometric Functions, Identities & Equations