Pythagoras' Theorem & Trigonometry
← Back to Mathematics
Pythagoras' Theorem
$a^2+b^2=c^2$
TOA CAH SOH
TOA
$\tan\theta=\dfrac{\text{O}}{\text{A}}$
CAH
$\cos\theta=\dfrac{\text{A}}{\text{H}}$
SOH
$\sin\theta=\dfrac{\text{O}}{\text{H}}$
Only for right-angled triangles
Obtuse Angles
$\sin(180^\circ-\theta)=\sin\theta$
$\cos(180^\circ-\theta)=-\cos\theta$
Triangles
Sine Rule
$\dfrac{a}{\sin A}=\dfrac{b}{\sin B}$
Cosine Rule
$c^2=a^2+b^2-2ab\cos C$
Area of Triangle
$\text{Area}=\dfrac{1}{2}ab\sin C$
Bearings
3-digit angle measured clockwise from North, e.g. $081^\circ$
Previous
Properties Of Circles
Next
Mensuration