Additional Mathematics Notes

Reproduced from http://teach.sg

1 Quadratic Equations & Inequalities

Sum & Product Of Roots

Sum of roots = $-\frac{b}{a}$ Product of roots = $\frac{b}{a}$

Quadratic Equation From Roots

 x^2 – (sum of roots) x + (product of roots) = 0

2, 1 or 0 real roots

2 real roots: $b^2 - 4ac > 0$ 1 real root (2 equal roots): $b^2 - 4ac = 0$ 0 real roots: $b^2 - 4ac < 0$

Curve Always Positive / Negative

 $b^2 - 4ac < 0$ (because curve has 0 real roots)

Line & Curve

Line intersect curve (at 2 points): $b^2 - 4ac > 0$ Line tangent to curve: $b^2 - 4ac = 0$ Line does not intersect curve: $b^2 - 4ac < 0$ *Line meets curve: $b^2 - 4ac > 0$

2 Indices & Surds

Indices

1. $a^{m} \times a^{n} = a^{m+n}$ 2. $a^{m} \div a^{n} = a^{m-n}$ 3. $(a^{m})^{n} = a^{mn}$ 4. $a^{0} = 1$ where $a \neq 0$ 5. $a^{-n} = \frac{1}{a^{n}}$ 6. $a^{\frac{1}{n}} = \sqrt[n]{a}$ 7. $a^{\frac{m}{n}} = (\sqrt[n]{a})^{m}$ 8. $(a \times b)^{n} = a^{n} \times b^{n}$ 9. $(\frac{a}{b})^{n} = \frac{a^{n}}{b^{n}}$

Surds

$$1. \sqrt{a} \times \sqrt{a} = a$$

$$2. \sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

$$3. \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$

$$4. m\sqrt{a} + n\sqrt{a} = (m+n)\sqrt{a}$$

$$5. m\sqrt{a} - n\sqrt{a} = (m-n)\sqrt{a}$$

Rationalise Denominator

For $\frac{k}{a\sqrt{b}}$, multiply numerator and denominator by \sqrt{b} . For $\frac{k}{a\sqrt{b}+c\sqrt{d}}$, multiply by the conjugate, which is

3 Polynomials & Partial Fractions

Polynomial Division

 $P(x) = \text{divisor} \times Q(x) + R(x)$

Remainder Theorem

If P(x) is divided by x-c, remainder is f(c). If P(x) is divided by ax-b, remainder is $f\left(\frac{b}{a}\right)$

Factor Theorem

If x + c is a factor of P(x), f(-c) = 0. If ax + b is a factor of P(x), $f\left(-\frac{b}{a}\right) = 0$.

Cubic Polynomials

$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

 $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$

Partial Fractions

1.
$$\frac{f(x)}{(ax+b)(cx+d)} = \frac{A}{ax+b} + \frac{B}{cx+d}$$
2.
$$\frac{f(x)}{(ax+b)(cx+d)^2} = \frac{A}{ax+b} + \frac{B}{cx+d} + \frac{C}{(cx+d)^2}$$
3.
$$\frac{f(x)}{(ax+b)(x^2+c)} = \frac{A}{ax+b} + \frac{Bx+C}{x^2+c}$$
Special case:
$$\frac{f(x)}{(ax+b)(x^2)} = \frac{A}{ax+b} + \frac{B}{x} + \frac{C}{x^2}$$

4 Binomial Expansions

Binomial Expansions

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n$$

General Term

$$T_{r+1} = \binom{n}{r} a^{n-r} b^r$$

n choose r

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$$

5 Power, Exponential, Logarithmic & Modulus Functions

Modulus Functions

For
$$|a| = b \Rightarrow a = b$$
 or $a = -b$.

Logarithm Definition

For $\log_a y$ to be defined,

 $2.\,a>0,a\neq 1$

Laws Of Logarithms

$$1. \log_a x^n = n \log_a x$$

$$2.\,\log_a xy = \log_a x + \log_a y$$

$$3. \log_a \frac{x}{y} = \log_a x - \log_a y$$

$$4. \log_a b = \frac{\log_c b}{\log_c a}$$

$$5. \log_a b = \frac{1}{\log_b a}$$

Logarithms To Exponential

$$\begin{split} \log_a y &= x \Leftrightarrow y = a^x \\ \lg y &= x \Leftrightarrow y = 10^x \\ \ln y &= x \Leftrightarrow y = e^x \end{split}$$

6 Trigonometric Functions, Identities & Equations

Special Angles

θ	0°	30°	45°	60°	90°
$\sin \theta$	$\frac{\sqrt{0}}{2} = 0$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2} = 1$
$\cos \theta$	$\frac{\sqrt{4}}{2} = 1$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2} = \frac{1}{2}$	$\frac{\sqrt{0}}{2} = 0$
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	_

Reciprocal Functions

$$1.\csc\,\theta = \frac{1}{\sin\theta}$$

$$2. \sec \theta = \frac{1}{\cos \theta}$$

3.
$$\cot \theta = \frac{1}{\tan \theta}$$

Negative Functions

$$1.\sin(-\theta) = -\sin\theta$$

$$2. \cos(-\theta) = \cos \theta$$

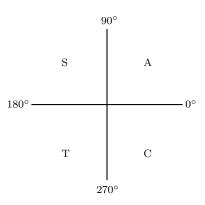
$$3. \tan(-\theta) = -\tan\theta$$

Tangent & Cotangent

1.
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

2.
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

ASTC



Trigonometric Identities

- 1. $\sin^2 A + \cos^2 A = 1$
- 2. $\sec^2 A = 1 + \tan^2 A$
- $3.\csc^2 A = 1 + \cot^2 A$

Addition Formulae

- 1. $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
- 2. $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
- 3. $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

Double Angle Formulae

- $1. \sin 2A = 2 \sin A \cos A$
- 2. $\cos 2A = \cos^2 A \sin^2 A = 2\cos^2 A 1 = 1 2\sin^2 A$ 3. $\tan 2A = \frac{2\tan A}{1 \tan^2 A}$

R-Formulae

- For $a > 0, b > 0, 0^{\circ} < \alpha < 90^{\circ}$,
- $1. a \sin \theta \pm b \cos \theta = R \sin(\theta \pm \alpha)$
- $2. a \cos \theta \pm b \sin \theta = R \cos(\theta \mp \alpha)$
- where $R = \sqrt{a^2 + b^2}$, $\tan \alpha = \frac{b}{a}$.

Principal Values

- 1. $-\frac{\pi}{2} \le \sin^{-1}\theta \le \frac{\pi}{2}$
- $2.0 < \cos^{-1} \theta < \pi$
- $3. -\frac{\pi}{2} < \tan^{-1}\theta < \frac{\pi}{2}$

© 2018 Eugene Guo Youjun ALL RIGHTS RESERVED

Transformation Of Trigonometric Graphs

Transformation to $y = a \sin x / a \cos x / a \tan x$

1. If a > 0: Scaling of graph with a factor of a parallel to the y-axis 2. If a < 0: Scaling of graph with a factor of a parallel to the y-axis, then reflecting of graph in x-axis

For sin & cos: amplitude becomes |a|

For tan: there is no amplitude

 $amplitude = \frac{maximum - minimum}{2}$

Transformation to $y = \sin bx / \cos bx / \tan bx$

Scaling of graph with a factor of $\frac{1}{b}$ parallel to the x-axis

For sin & cos: period becomes $\frac{2\pi^{b}}{b}$

For tan: period becomes $\frac{\pi}{L}$

Transformation to $y = \sin x + c/\cos x + c/\tan x + c$

Translating of graph by c units parallel to the y-axis

$$c = \frac{\text{maximum} + \text{minimum}}{2}$$

Transformation to $y = a \sin bx + c$

- 1. $y = \sin bx$: Scaling of graph with a factor of $\frac{1}{h}$ parallel to
- 2. $y = a \sin bx$: Scaling of graph with a factor of a parallel to the y-axis (reflecting of graph in x-axis if a < 0)
- 3. $y = a \sin bx + c$: Translating of graph by c units parallel to the y-axis

Coordinate Geometry

Gradient

$$m = \frac{y_1 - y_2}{x_1 - x_2}$$

Equation

$$y - y_1 = m(x - x_1)$$
$$y = mx + c$$

Midpoint

$$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$

Parallel Lines

 $m_1 = m_2$

Perpendicular Lines

$$m_1 = -\frac{1}{m_2}$$
$$m_1 \times m_2 = -1$$

Area Of Quadrilateral

$$A = \frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 & x_4 & x_1 \\ y_1 & y_2 & y_3 & y_4 & y_1 \end{vmatrix}$$

= $\frac{1}{2} |(x_1y_2 + x_2y_3 + x_3y_4 + x_4y_1) - (x_2y_1 + x_3y_2 + x_4y_3 + x_1y_4)|$

Note: coordinates should be in anti-clockwise direction

Circle

$$(x-a)^2 + (y-b)^2 = r^2$$

(a,b): centre of circle
r: radius

$$x^{2} + y^{2} + 2gx + 2fy + c = 0$$

$$(-g, -f): \text{ centre of circle}$$

$$\sqrt{f^{2} + g^{2} - c}: \text{ radius}$$

Differentiation

Differentiation Rules

$$\begin{aligned} &1.\ \frac{\mathrm{d}}{\mathrm{d}x}c = 0\\ &2.\ \frac{\mathrm{d}}{\mathrm{d}x}x^n = nx^{n-1}\\ &3.\ \frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x \end{aligned}$$

3.
$$\frac{\mathrm{d}}{\mathrm{d}x}\sin x = \cos x$$

$$4. \frac{d}{dx} \cos x = -\sin x$$

$$5. \frac{\mathrm{d}^x}{\mathrm{d}^x} \tan x = \sec^2 x$$

$$6. \frac{\mathrm{d}^x}{\mathrm{d}x} e^x = e^x$$

7.
$$\frac{d}{dx} \ln x = \frac{1}{x}$$

Note: $\frac{d}{dx} kf(x) = k \times \frac{d}{dx} f(x)$

Chain Rule

For
$$y = f(u)$$
 and $u = g(x)$,

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

Further Differentiation Rules (Chain Rule)

$$1. \frac{\mathrm{d}}{\mathrm{d}x}(ax+b)^n = an(ax+b)^{n-1}$$

$$2. \frac{dx}{dx} \sin(ax+b) = a\cos(ax+b)$$

$$3. \frac{d}{dx} \cos(ax+b) = -a\sin(ax+b)$$

4.
$$\frac{dx}{dx}\tan(ax+b) = a\sec^2(ax+b)$$
5.
$$\frac{d}{dx}e^{ax+b} = ae^{ax+b}$$

$$5. \frac{\mathrm{d}}{\mathrm{d}x} e^{ax+b} = ae^{ax+b}$$

$$6. \frac{d}{dx} \ln (ax + b) = \frac{a}{ax + b}$$

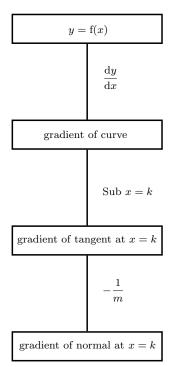
Product Rule

$$\frac{\mathrm{d}}{\mathrm{d}x}(uv) = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$$

Quotient Rule

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{u}{v} \right) = \frac{v \frac{\mathrm{d}u}{\mathrm{d}x} - u \frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$$

Gradient Of Curve, Tangent & Normal



Increasing & Decreasing Functions

- 1. For increasing functions, $\frac{\mathrm{d}y}{\mathrm{d}x} > 0$.
- 2. For decreasing functions, $\frac{dy}{dx} < 0$.

Rates Of Change

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$$

Stationary point

A stationary point is defined when $\frac{dy}{dx} = 0$.

First derivative test

If
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
 for $x = k$, test for k^- , k , k^+ .

Maximum point:

x	k^-	k	k^+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	+	0	_

Minimum point:

x	k^-	k	k^+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	_	0	+

Inflexion point:

x	k^-	k	k^+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	+	0	+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	_	0	_

Second Derivative Test

- 1. If $\frac{d^2y}{dx^2} < 0$, it is a maximum point.
- 2. If $\frac{d^2y}{dx^2} > 0$, it is a minimum point.
- 3. If $\frac{d^2y}{dx^2} = 0$, need to do first derivative test.

10 Integration

Integration Rules

- 1. $\int k \, \mathrm{d}x = kx + c$
- 2. $\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$
- 3. $\int \sin x \, dx = -\cos x + c$
- 4. $\int \cos x \, \mathrm{d}x = \sin x + c$
- 5. $\int \sec^2 x \, dx = \tan x + c$
- 6. $\int e^x \, \mathrm{d}x = e^x + c$
- 7. $\int \frac{1}{x} dx = \ln x + c$

Note: $\int kf(x) dx = k \times \int f(x) dx$

Further Integration Rules

1.
$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c, n \neq -1$$

$$2. \int \sin(ax+b) \, \mathrm{d}x = -\frac{\cos(ax+b)}{a} + c$$

3.
$$\int \cos(ax+b) \, \mathrm{d}x = \frac{\sin(ax+b)}{a} + c$$

$$4. \int \sec^2(ax+b) \, \mathrm{d}x = \frac{\tan(ax+b)}{a} + c$$

$$5. \int e^{ax+b} \, \mathrm{d}x = \frac{e^{ax+b}}{a} + c$$

$$6. \int \frac{1}{ax+b} \, \mathrm{d}x = \frac{\ln(ax+b)}{a} + c$$

Definite Integral

For
$$\int f(x) dx = F(x) + c$$
,

$$\int_a^b f(x) dx = F(b) - F(a).$$

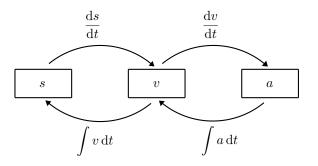
Area With Respect To x-axis Or y-axis

For area with respect to x-axis, $\int_{0}^{b} f(x) dx$.

For area with respect to y-axis, $\int_{-a}^{a} f(y) dy$.

Note: For area below the x-axis (taken with respect to x-axis) or area to the left of the y-axis (taken with respect to y-axis), it is taken as negative.

Kinematics



$$1.v = \frac{\mathrm{d}s}{\mathrm{d}t}$$

$$2. a = \frac{\mathrm{d}v}{\mathrm{d}t}$$

$$3. s = \int v \, \mathrm{d}t$$

$$4. v = \int a \, \mathrm{d}t$$

- a. velocity, v determines both the speed and the direction
- b. average speed = $\frac{\text{total distance}}{}$
- b. average speed = $\frac{}{\text{total time}}$ c. particle starts from origin, s = 0
- d. instantaneously at rest, v=0
- e. max / min velocity, $a = \frac{\mathrm{d}v}{\mathrm{d}t} = 0$
- f. max / min displacement, $v = \frac{ds}{dt} = 0$