

© 2018 Eugene Guo Youjun All rights reserved

Surface area & volume Cuboid

$$\label{eq:surface} \begin{split} \text{Surface area} &= 2(lb+lh+bh) \\ \text{Volume} &= l \times b \times h \end{split}$$

Cylinder

 $\begin{array}{l} {\rm Surface~area}=2\times {\rm base~area}+{\rm curved~surface~area}\\ =2\pi r^2+2\pi rh\\ {\rm Volume}={\rm base~area}\times {\rm height}\\ =\pi r^2h \end{array}$

\mathbf{Prism}

Pyramid

Volume = $\frac{1}{3} \times$ base area \times height

 \bigodot 2018 Eugene Guo Youjun All rights reserved

Cone

 $\begin{array}{l} \mbox{Volume} = \frac{1}{3} \times \mbox{ base area } \times \mbox{ height} \\ = \frac{1}{3} \pi r^2 h \\ \mbox{Surface Area} = \mbox{ base area} + \mbox{ curved surface area} \\ = \pi r^2 + \pi r l \end{array}$

Sphere

Volume = $\frac{4}{3}\pi r^3$ Surface area = $4\pi r^2$

3 Functions & Graphs Graphs of power functions $(y = ax^n)$

4 Exponential Function (Graphs)

Graphs of exponential function

5 Properties Of Circles

Angle properties

tan. \perp rad.

 \angle s in opp. seg. $(a + c = b + d = 180^{\circ})$

tan. from ext. pt.

 \angle at centre = 2 \angle at circ.

O

6 Bisectors

Constructing perpendicular bisector

Constructing angle bisector

