Elementary Mathematics Notes

Reproduced from http://teach.sg

1 Numbers \& Their Operations

Types of numbers

Integers (\mathbb{Z}) : ..., $-3,-2,-1,0,1,2,3,4, \ldots$
Prime: integers that are divisible by 1 and itself only, smallest prime number is 2
Rational numbers $(\mathbb{Q}) \frac{\text { integer }}{\text { integer }}: \frac{4}{7},-3 \frac{1}{8}, 0.3,2 . \dot{6} \dot{5}, 92, \sqrt{16}$
Irrational numbers: $\pi, \sqrt{2}, e$
Real numbers (\mathbb{R}) : all numbers
Standard form
$A \times 10^{n}$, where n is an integer, and $1 \leq A<10$
SI prefix

Prefix	10^{n}
pico	10^{-12}
nano	10^{-9}
micro	10^{-6}
milli	10^{-3}
kilo	10^{3}
mega	10^{6}
giga	10^{9}
tera	10^{12}

Indices

1. $a^{m} \times a^{n}=a^{m+n}$
2. $a^{m} \div a^{n}=a^{m-n}$
3. $\left(a^{m}\right)^{n}=a^{m n}$
4. $(a b)^{m}=a^{m} b^{m}$
5. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
6. $a^{-n}=\frac{1}{a^{n}}$
7. $a^{0}=1$
8. $a^{\frac{1}{n}}=\sqrt[n]{a}$
9. $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}$

2 Ratio \& Proportion

Map scale
Length scale $=1: r$
Area scale $=1: r^{2}$

3 Percentage

Percentage increase $/$ decrease $=\frac{\text { increase } / \text { decrease }}{\text { original }} \times 100 \%$

4 Rate \& Speed

Average speed $=\frac{\text { total distance }}{\text { total time }}$
5 Algebraic Expressions \& Formulae
$n^{\text {th }}$ term
$a+(n-1) d$
Special algebraic identities
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$(a+b)(a-b)=a^{2}-b^{2}$

6 Equations

Quadratic formula

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

7 Set Language \& Notation

ϵ : is an element of
$\mathrm{n}(A)$: number of elements in set A
A^{\prime} : complement of set A
\varnothing : empty set
ξ : universal set
\cup : union
\cap : intercept
\subset : subset

8 Problems In Real-World Contexts

Simple interest
$I=\frac{P R T}{100}$
Compound interest
$A=P\left(1+\frac{R}{100}\right)^{n}$

9 Angles, Triangles \& Polygons
Types of polygons

No. of sides	Polygons
3	triangle
4	quadrilateral
5	pentagon
6	hexagon
7	heptagon
8	octagon
9	nonagon
10	decagon

Sum of interior \& exterior angles
Sum of interior angles $=(n-2) \times 180^{\circ}$
Sum of exterior angles $=360^{\circ}$

10 Congruence \& Similarity

Congruent \& Similar Triangles

Congruent triangles	Similar triangles
SSS, SAS, AAS, RHS	SSS, SAS, AAA

Ratio of area \& volume
$\frac{A_{1}}{A_{2}}=\left(\frac{l_{1}}{l_{2}}\right)^{2}$
$\frac{V_{1}}{V_{2}}=\left(\frac{l_{1}}{l_{2}}\right)^{3}$
11 Pythagoras' Theorem \&
Trigonometry

Pythagoras' theorem
$a^{2}+b^{2}=c^{2}$
Trigonometric ratios
$\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$
$\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$
$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}$
TOA CAH SOH is applicable for only right-angled triangles
Obtuse angles
$\sin \left(180^{\circ}-\theta\right)=\sin \theta$
$\cos \left(180^{\circ}-\theta\right)=-\cos \theta$

Sine rule
$\frac{a}{\sin A}=\frac{b}{\sin B}$
Cosine rule
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Area of triangle

Area of triangle $=\frac{1}{2} a b \sin C$
Bearings

A bearing is a $\mathbf{3}$-digit positive number with units of degree to show direction clockwise from the north direction.

12 Mensuration

Conversion

$1 \mathrm{~m}=100 \mathrm{~cm}$
$1 \mathrm{~m}^{2}=10,000 \mathrm{~cm}^{2}$
$1 \mathrm{~m}^{3}=1,000,000 \mathrm{~cm}^{3}$

Radian \& Degree

$180^{\circ}=\pi \mathrm{rad}$
Arc length \& sector area
Degree
$s=\frac{\theta}{360^{\circ}} \times 2 \pi r$, where θ is in degrees
$A=\frac{\theta}{360^{\circ}} \times \pi r^{2}$, where θ is in degrees
Radian
$s=r \theta$, where θ is in radians
$A=\frac{1}{2} r^{2} \theta$, where θ is in radians

13 Coordinate Geometry

Cartesian coordinate

(x, y)

Gradient

$m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$

Equation

$y-y_{1}=m\left(x-x_{1}\right)$
$y=m x+c$
*Vertical line: $x=a$
*Horizontal line: $y=b$

Length

Length $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

14 Vectors In 2 Dimensions

Representation

Vectors can be represented by $\binom{x}{y}, \overrightarrow{A B}$, a or $\underset{\sim}{a}$.

Magnitude

$|\overrightarrow{A B}|$ or $|\mathbf{a}|=\sqrt{x^{2}+y^{2}}$

15 Data Analysis

Mode

Mode is the most frequently occurring number. A set of data can have more than one mode.

Mean

mean $=\frac{\text { sum of all numbers }}{\text { number of numbers }}$

Median

Median is the centre number when the numbers are arranged from smallest to largest.

Range

Range $=$ maximum - minimum

Quartiles \& percentiles

Interquartile range

Interquartile range $=$ upper quartile - lower quartile
Box-and-whisker plot

Mean \& standard deviation

Ungrouped

Mean, $\bar{x}=\frac{\sum x}{N}$
Standard deviation, $\sigma=\sqrt{\frac{\sum(x-\bar{x})^{2}}{N}}$

Grouped

Mean, $\bar{x}=\frac{\sum f x}{\sum f}$
Standard deviation, $\sigma=\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}$

