# **Elementary Mathematics Notes**

Reproduced from http://teach.sg

# 1 Numbers & Their Operations

## Types of numbers

Integers ( $\mathbb{Z}$ ): ..., -3, -2, -1, 0, 1, 2, 3, 4, ...

Prime: integers that are divisible by 1 and itself only, smallest prime number is 2

Rational numbers ( $\mathbb{Q}$ )  $\frac{\text{integer}}{\text{integer}}$ :  $\frac{4}{7}$ ,  $-3\frac{1}{8}$ , 0.3,  $2.\dot{6}\dot{5}$ , 92,  $\sqrt{16}$ 

Irrational numbers:  $\pi, \sqrt{2}, e$ Real numbers ( $\mathbb{R}$ ): all numbers

#### Standard form

 $A \times 10^n$ , where n is an integer, and  $1 \le A < 10$ 

## SI prefix

| Prefix | $10^{n}$   |
|--------|------------|
| pico   | $10^{-12}$ |
| nano   | $10^{-9}$  |
| micro  | $10^{-6}$  |
| milli  | $10^{-3}$  |
| kilo   | $10^{3}$   |
| mega   | $10^{6}$   |
| giga   | $10^{9}$   |
| tera   | $10^{12}$  |

## Indices

$$1.\,a^m\times a^n=a^{m+n}$$

$$2.\,a^m \div a^n = a^{m-n}$$

$$3. (a^m)^n = a^{mn}$$

$$4. (ab)^m = a^m b^m$$

$$5. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$6.a^{-n} = \frac{1}{r}$$

$$7. a_{1}^{0} = 1$$

$$8. a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$9. a^{\frac{m}{n}} = (\sqrt[n]{a})^m$$

## 9 D 11 (

# 2 Ratio & Proportion

## Map scale

 ${\it Length scale} = 1:r$ 

Area scale =  $1:r^2$ 

## 3 Percentage

 $\label{eq:percentage} \text{Percentage increase / decrease} = \frac{\text{increase / decrease}}{\text{original}} \times 100\%$ 

## 4 Rate & Speed



Average speed =  $\frac{\text{total distance}}{\text{total time}}$ 

# 5 Algebraic Expressions & Formulae

 $n^{th}$  term

$$a + (n-1)d$$

## Special algebraic identities

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

# 6 Equations

## Quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

## 7 Set Language & Notation

 $\in$ : is an element of

n(A): number of elements in set A

A': complement of set A

Ø: empty set

 $\xi$ : universal set

∪: union

∩: intercept

 $\subset$ : subset

## 8 Problems In Real-World Contexts

## Simple interest

$$I = \frac{PRT}{100}$$

# Compound interest

$$A = P\left(1 + \frac{R}{100}\right)^n$$

# 9 Angles, Triangles & Polygons Types of polygons

| No. of sides | Polygons             |
|--------------|----------------------|
| 3            | triangle             |
| 4            | quadrilateral        |
| 5            | $\mathbf{pent}$ agon |
| 6            | hexagon              |
| 7            | $\mathbf{hept}$ agon |
| 8            | $\mathbf{oct}$ agon  |
| 9            | nonagon              |
| 10           | $\mathbf{dec}$ agon  |

## Sum of interior & exterior angles

Sum of interior angles =  $(n-2) \times 180^{\circ}$ Sum of exterior angles =  $360^{\circ}$ 

# 10 Congruence & Similarity

## Congruent & Similar Triangles

| Congruent triangles | Similar triangles |
|---------------------|-------------------|
| SSS, SAS, AAS, RHS  | SSS, SAS, AAA     |

## Ratio of area & volume

$$\frac{A_1}{A_2} = \left(\frac{l_1}{l_2}\right)^2$$

$$\frac{V_1}{V_2} = \left(\frac{l_1}{l_2}\right)^3$$

# 11 Pythagoras' Theorem & Trigonometry

# Pythagoras' theorem

$$a^2 + b^2 = c^2$$

## Trigonometric ratios

 $\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$   $\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}}$   $\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}}$ 

TOA CAH SOH is applicable for only right-angled triangles

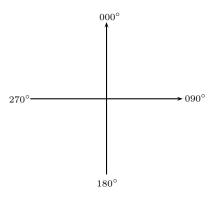
## Obtuse angles

$$\sin(180^{\circ} - \theta) = \sin\theta$$

$$\cos(180^{\circ} - \theta) = -\cos\theta$$

#### Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B}$$


#### Cosine rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

## Area of triangle

Area of triangle =  $\frac{1}{2}ab\sin C$ 

#### Bearings



A bearing is a **3-digit positive number** with units of degree to show direction **clockwise** from the north direction.

## 12 Mensuration

## Conversion

1 m = 100 cm

 $1 \text{ m}^2 = 10,000 \text{ cm}^2$ 

 $1 \text{ m}^3 = 1,000,000 \text{ cm}^3$ 

## Radian & Degree

 $180^{\circ} = \pi \text{ rad}$ 

## Arc length & sector area

#### Degree

 $s = \frac{\theta}{360^{\circ}} \times 2\pi r$ , where  $\theta$  is in degrees  $A = \frac{\theta}{360^{\circ}} \times \pi r^2$ , where  $\theta$  is in degrees

#### Radian

 $s = r\theta$ , where  $\theta$  is in radians  $A = \frac{1}{2}r^2\theta$ , where  $\theta$  is in radians

## 13 Coordinate Geometry

#### Cartesian coordinate

(x, y)

#### Gradient

$$m = \frac{y_1 - y_2}{x_1 - x_2}$$

#### Equation

 $y - y_1 = m(x - x_1)$ 

y = mx + c

\*Vertical line: x = a

\*Horizontal line: y = b

## Length

Length = 
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

## 14 Vectors In 2 Dimensions

## Representation

Vectors can be represented by  $\begin{pmatrix} x \\ y \end{pmatrix}$ ,  $\overrightarrow{AB}$ , **a** or  $\underline{a}$ .

## Magnitude

$$|\overrightarrow{AB}|$$
 or  $|\mathbf{a}| = \sqrt{x^2 + y^2}$ 

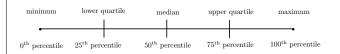
## 15 Data Analysis

#### Mode

Mode is the **most frequently occurring** number. A set of data can have **more than one** mode.

#### Mean

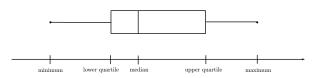
 $mean = \frac{sum of all numbers}{number of numbers}$ 


#### Median

Median is the **centre** number when the numbers are arranged from **smallest to largest**.

## Range

Range = maximum - minimum


## Quartiles & percentiles



## Interquartile range

Interquartile range = upper quartile - lower quartile

#### Box-and-whisker plot



#### Mean & standard deviation

#### Ungrouped

Mean,  $\bar{x} = \frac{\sum x}{N}$ 

Standard deviation,  $\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{N}}$ 

#### Grouped

Mean,  $\overline{x} = \frac{\sum fx}{\sum f}$ 

Standard deviation,  $\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$