
2.\,\int \sin (ax+b)\,\text{d}x = -\dfrac{\cos (ax+b)}{a} +c\$

4.\,\int \sec^2 (ax+b)\,\text{d}x = \dfrac{\tan (ax+b)}{a} +c\$

6.\,\int \frac{1}{ax+b}\,\text{d}x = \dfrac{\ln (ax+b)}{a}+c
![Rendered by QuickLaTeX.com [/stextbox] [stextbox caption="Definite Integral" stextbox id="info"]For](https://teach.sg/wp-content/ql-cache/quicklatex.com-ebf7f2efa9ec359a2035033dbf961af4_l3.png)
\int \text{f}(x) \,\text{d}x = \text{F}(x) + c

\displaystyle\int_a^b \text{f}(x) \,\text{d}x = \text{F}(b) -\text{F}(a)
![Rendered by QuickLaTeX.com .[/stextbox] [stextbox caption="Area With Respect To](https://teach.sg/wp-content/ql-cache/quicklatex.com-26588784051b3f5d6d210293a8492479_l3.png)
x

y
![Rendered by QuickLaTeX.com -axis" stextbox id="default"]For area with respect to](https://teach.sg/wp-content/ql-cache/quicklatex.com-f148dac285ab5a26650eb238e09434c5_l3.png)
x

\displaystyle\int_a^b \text{f}(x) \,\text{d}x

y

\displaystyle\int_c^d \text{f}(y) \,\text{d}y

x

x

y

y
![Rendered by QuickLaTeX.com -axis), it is taken as negative. [/stextbox] [stextbox caption="Kinematics" stextbox id="download"]](https://teach.sg/wp-content/ql-cache/quicklatex.com-0a26a8489b92ffe00b0c00813be93db5_l3.png)
1.\,v=\dfrac{\text{d}s}{\text{d}t}\$

3.\,s=\displaystyle\int v\,\text{d}t\$
Note:
a. velocity,
determines both the speed and the direction
b. 
c. particle starts from origin, 
d. instantaneously at rest, 
e. max / min velocity, 
f. max / min displacement, 