30Oct
2016
Eugene / Learning, Stanford Machine Learning / 0 comment
Cost Function
Linear regression: solve a minimisation problem
minimise $\theta_0, \theta_1$ for $J(\theta_0, \theta_1)$
cost function: $J(\theta_0, \theta_1) = \dfrac {1}{2m} \displaystyle \sum _{i=1}^m \left (h_\theta (x_{i}) – y_{i} \right)^2$