Eigenvectors

To capture global connectivity structure, eigenvectors are really useful. Results will be spectral clustering.

Spectrum of matrix: set of eigenvalues
Matrix: Laplacian of graph

Labelled graph: 6n-graf.svg

Adjacency matrix: \left(\begin{array}{rrrrrr}  0 &  1 &  0 &  0 &  1 &  0\\  1 &  0 &  1 &  0 &  1 &  0\\  0 &  1 &  0 &  1 &  0 &  0\\  0 &  0 &  1 &  0 &  1 &  1\\  1 &  1 &  0 &  1 &  0 &  0\\  0 &  0 &  0 &  1 &  0 &  0\\ \end{array}\right)

Laplacian matrix: \left(\begin{array}{rrrrrr}  2 & -1 &  0 &  0 & -1 &  0\\ -1 &  3 & -1 &  0 & -1 &  0\\  0 & -1 &  2 & -1 &  0 &  0\\  0 &  0 & -1 &  3 & -1 & -1\\ -1 & -1 &  0 & -1 &  3 &  0\\  0 &  0 &  0 & -1 &  0 &  1\\ \end{array}\right)

loading
×