Gradient Descent

Gradient descent algorithm
repeat until convergence {
θj:=θjαθjJ(θ0,θ1) (for j=0 and j=1)
}

α: learning rate
a:=b: assigning b to a

Simultaneous update
temp0 := θ0αθ0J(θ0,θ1)
temp1 := θ1αθ1J(θ0,θ1)
θ0 := temp0
θ1 := temp1

Gradient descent for linear regression
repeat until convergence {
θ0:=θ0α1mi=1m(hθ(xi)yi)θ1:=θ1α1mi=1m((hθ(xi)yi)xi)
}

loading
×