Types Of Errors

    \[\begin{array}{|l|l|l|l|} \hline                                                      &            & \textbf{Predicted fraud?}    &                               \\ \hline                                                       &            & \textbf{Y}                    & \textbf{N}                    \\ \hline {\textbf{Is it actually fraud?}} & \textbf{Y} & +/+ \text{(true positive)}           & -/+ \text{(false negative - type 2)} \\ \hline {\textbf{}}                      & \textbf{N} & +/- \text{(false positive - type 1)} & -/- \text{(true negative)}           \\ \hline \end{array}\]

Precision: how often a classifier is right when it says something is fraud (\frac{\text{true positives}}{\text{true positives}+\text{false positives}})
Recall: how much of the actual fraud that we correctly detect (\frac{\text{true positives}}{\text{true positives}+\text{false negatives}})

    \[\begin{array}{|l|l|} \hline \textbf{Conservation (flag fewer transactions)} & \textbf{Aggressive (flag more transactions)}\\\hline \text{high precision (few false positives)} & \text{low precision (many false positives)}\\\hline \text{low recall (miss some fraud)} & \text{high recall (catch most fraud)}\\\hline \end{array}\]

Harmonic mean of x and y = \frac{1}{\frac{1}{2}(\frac{1}{x}+\frac{1}{y})}

F_1 = \frac{1}{\frac{1}{2}(\frac{1}{\text{precision}}+\frac{1}{\text{recall}})}=\frac{2\times\text{precision}\times\text{recall}}{\text{precision}+\text{recall}}

loading
×