1. For increasing functions,
\dfrac{\text{d}y}{\text{d}x}<0
\dfrac{\text{d}y}{\text{d}t}=\dfrac{\text{d}y}{\text{d}x}\times\dfrac{\text{d}x}{\text{d}t}
\dfrac{\text{d}y}{\text{d}x}=0
x=k
k^-
k
k^+
\dfrac{\text{d}^2y}{\text{d}x^2}<0\$, it is a maximum point.
2. If , it is a minimum point.
3. If , need to do first derivative test.