2.\,\int \sin (ax+b)\,\text{d}x = -\dfrac{\cos (ax+b)}{a} +c\$
4.\,\int \sec^2 (ax+b)\,\text{d}x = \dfrac{\tan (ax+b)}{a} +c\$
6.\,\int \frac{1}{ax+b}\,\text{d}x = \dfrac{\ln (ax+b)}{a}+c
\int \text{f}(x) \,\text{d}x = \text{F}(x) + c
\displaystyle\int_a^b \text{f}(x) \,\text{d}x = \text{F}(b) -\text{F}(a)
x
y
x
\displaystyle\int_a^b \text{f}(x) \,\text{d}x
y
\displaystyle\int_c^d \text{f}(y) \,\text{d}y
x
x
y
y
1.\,v=\dfrac{\text{d}s}{\text{d}t}\$
3.\,s=\displaystyle\int v\,\text{d}t\$
Note:
a. velocity, determines both the speed and the direction
b.
c. particle starts from origin,
d. instantaneously at rest,
e. max / min velocity,
f. max / min displacement,